134 research outputs found

    Subject-Independent Detection of Movement-Related Cortical Potentials and Classifier Adaptation from Single-Channel EEG

    Get PDF

    Analysis of Movement-Related Cortical Potentials for Brain-Computer Interfacing in Stroke Rehabilitation

    Get PDF

    Detection of Attempted Stroke Hand Motions from Surface EMG

    Get PDF

    Detection of error-related potentials in stroke patients from EEG using an artificial neural network

    Get PDF
    Error-related potentials (ErrPs) have been proposed as a means for improving brain–computer interface (BCI) performance by either correcting an incorrect action performed by the BCI or label data for continuous adaptation of the BCI to improve the performance. The latter approach could be relevant within stroke rehabilitation where BCI calibration time could be minimized by using a generalized classifier that is continuously being individualized throughout the rehabilitation session. This may be achieved if data are correctly labelled. Therefore, the aims of this study were: (1) classify single-trial ErrPs produced by individuals with stroke, (2) investigate test–retest reliability, and (3) compare different classifier calibration schemes with different classification methods (artificial neural network, ANN, and linear discriminant analysis, LDA) with waveform features as input for meaningful physiological interpretability. Twenty-five individuals with stroke operated a sham BCI on two separate days where they attempted to perform a movement after which they received feedback (error/correct) while continuous EEG was recorded. The EEG was divided into epochs: ErrPs and NonErrPs. The epochs were classified with a multi-layer perceptron ANN based on temporal features or the entire epoch. Additionally, the features were classified with shrinkage LDA. The features were waveforms of the ErrPs and NonErrPs from the sensorimotor cortex to improve the explainability and interpretation of the output of the classifiers. Three calibration schemes were tested: within-day, between-day, and across-participant. Using within-day calibration, 90% of the data were correctly classified with the entire epoch as input to the ANN; it decreased to 86% and 69% when using temporal features as input to ANN and LDA, respectively. There was poor test–retest reliability between the two days, and the other calibration schemes led to accuracies in the range of 63–72% with LDA performing the best. There was no association between the individuals’ impairment level and classification accuracies. The results show that ErrPs can be classified in individuals with stroke, but that user- and session-specific calibration is needed for optimal ErrP decoding with this approach. The use of ErrP/NonErrP waveform features makes it possible to have a physiological meaningful interpretation of the output of the classifiers. The results may have implications for labelling data continuously in BCIs for stroke rehabilitation and thus potentially improve the BCI performance

    Single-Trial Classification of Error-Related Potentials in People with Motor Disabilities:A Study in Cerebral Palsy, Stroke, and Amputees

    Get PDF
    Brain-computer interface performance may be reduced over time, but adapting the classifier could reduce this problem. Error-related potentials (ErrPs) could label data for continuous adaptation. However, this has scarcely been investigated in populations with severe motor impairments. The aim of this study was to detect ErrPs from single-trial EEG in offline analysis in participants with cerebral palsy, an amputation, or stroke, and determine how much discriminative information different brain regions hold. Ten participants with cerebral palsy, eight with an amputation, and 25 with a stroke attempted to perform 300–400 wrist and ankle movements while a sham BCI provided feedback on their performance for eliciting ErrPs. Pre-processed EEG epochs were inputted in a multi-layer perceptron artificial neural network. Each brain region was used as input individually (Frontal, Central, Temporal Right, Temporal Left, Parietal, and Occipital), the combination of the Central region with each of the adjacent regions, and all regions combined. The Frontal and Central regions were most important, and adding additional regions only improved performance slightly. The average classification accuracies were 84 ± 4%, 87± 4%, and 85 ± 3% for cerebral palsy, amputation, and stroke participants. In conclusion, ErrPs can be detected in participants with motor impairments; this may have implications for developing adaptive BCIs or automatic error correction

    Implementing Performance Accommodation Mechanisms in Online BCI for Stroke Rehabilitation: A Study on Perceived Control and Frustration

    Get PDF
    Brain–computer interfaces (BCIs) are successfully used for stroke rehabilitation, but the training is repetitive and patients can lose the motivation to train. Moreover, controlling the BCI may be difficult, which causes frustration and leads to even worse control. Patients might not adhere to the regimen due to frustration and lack of motivation/engagement. The aim of this study was to implement three performance accommodation mechanisms (PAMs) in an online motor imagery-based BCI to aid people and evaluate their perceived control and frustration. Nineteen healthy participants controlled a fishing game with a BCI in four conditions: (1) no help, (2) augmented success (augmented successful BCI-attempt), (3) mitigated failure (turn unsuccessful BCI-attempt into neutral output), and (4) override input (turn unsuccessful BCI-attempt into successful output). Each condition was followed-up and assessed with Likert-scale questionnaires and a post-experiment interview. Perceived control and frustration were best predicted by the amount of positive feedback the participant received. PAM-help increased perceived control for poor BCI-users but decreased it for good BCI-users. The input override PAM frustrated the users the most, and they differed in how they wanted to be helped. By using PAMs, developers have more freedom to create engaging stroke rehabilitation games
    • …
    corecore